from collections import defaultdict
from pprint import pprint
import numpy
import pandas
from rqalpha.apis import *
__config__ = {
"base": {
"start_date": "20190101",
"end_date": "20191231",
'frequency': '1d',
"accounts": {
"stock": 50000,
},
"data_bundle_path": r"E:\data\bundle",
},
"extra": {
"log_level": "debug",
},
"mod": {
"sys_progress": {
"enabled": True,
"show": True
}, "sys_accounts": {
"enabled": True,
"dividend_reinvestment": True,
},
"sys_analyser": {
"enabled": True,
"plot": True,
'benchmark': '000300.XSHG',
},
},
}
def get_holding_ticker():
rqdatac.init()
df = rqdatac.get_factor_exposure(rqdatac.all_instruments("Stock").order_book_id, "20190101", "20191231")
df.reset_index().sort_values("date").to_csv("factor_exposure.csv", index=False)
def init(context):
df = pandas.read_csv("factor_exposure.csv")
all_order_book_id = all_instruments().order_book_id.to_list()
context.df = df[df["order_book_id"].isin(all_order_book_id)]
context.buy_map = defaultdict(list)
context.holding_map = defaultdict(list)
context.sell_factors = []
context.day_count = 0
context.sell_multiple = 1.2
def before_trading(context):
pprint("当日购买行业:{}".format(context.buy_map))
print("当日持仓:{}".format([i.order_book_id for i in get_positions()]))
print("年化:{}".format(context.portfolio.total_returns))
def handle_bar(context, bar_dict):
for factors, order_book_ids in context.buy_map.items():
if context.stock_account.cash < 2000:
break
for order_book_id in order_book_ids.copy():
o = order_value(order_book_id, 2000)
if o:
context.holding_map[factors].append(order_book_id)
order_book_ids.remove(order_book_id)
for factors in context.sell_factors:
for order_book_id in context.holding_map[factors].copy():
a = True
if a:
o = order_percent(order_book_id, -1)
if o:
context.holding_map[factors].remove(order_book_id)
def dt_to_str(dt):
return "{}-{}-{}".format(dt.year, dt.month, dt.day)
def is_rise(order_book_id):
a, b = history_bars(order_book_id, 2, frequency="1d", fields='close')
return b > a
def after_trading(context):
context.day_count += 1
if context.day_count % 5 != 1:
return
df = context.df[context.now.date().isoformat() == context.df.date].copy()
df.loc[:, 'rose'] = df["order_book_id"].apply(is_rise)
df.loc[:, 'close'] = df["order_book_id"].apply(lambda x: history_bars(x, 1, frequency="1d", fields='close'))
context.sell_factors = []
context.buy_map = defaultdict(list)
for factors in df.columns[13:-2]:
_df = df[df[factors] == 1]
if _df['rose'].sum() / _df['order_book_id'].size > 0.9:
context.buy_map[factors] = _df[(_df["close"] > 5) & (_df["close"] < 6)].sort_values('close')[
'order_book_id'].to_list()[:2]
elif _df['rose'].sum() / _df['order_book_id'].size < 0.3:
context.sell_factors.append(factors)
del df
if __name__ == '__main__':
import rqalpha
rqalpha.run_func(init=init,
before_trading=before_trading,
handle_bar=handle_bar,
after_trading=after_trading,
config=__config__)